Journal of Computational Physi&§9,329-343 (2000)

®
doi:10.1006/jcph.2000.6448, available online at http://www.idealibrary.col DE &l. v

Iterative Methods Applied to Matrix Equations
Found in Calculating Spheroidal Functions

D. J. Browr¥ and R. M. Stringfield

Los Alamos National Laboratory, Los Alamos, New Mexico 87545
E-mail: *djbrown@Ianl.govjstringfield r@lanl.gov

Received August 5, 1999; revised January 5, 2000

We look at iterative methods for solving matrix equations, particularly those ma-
trices with small entries. Iterative methods aid computational stability by relying on
the topological structure of Banach or Hilbert spaces rather than depending on a cal-
culation’s numerical precision. When applicable, they are also quicker than Gaussian
elimination. As an example, we use these methods to tabulate the expansion of peri-
odic spheroidal functions in associated Legendre functions, given arbitrary values of
the parameters appearing in its defining differential equation. These functions appear
in solutions to 3-D Helmholtz equations in oblate and prolate spheroidal coordinates
as well as a 1-D Schdinger equation. © 2000 Academic Press

Key Wordsspheroidal wave functions; iterative methods for linear systems; eigen-
value problems.

I. INTRODUCTION

Occasionally, mathematical physics problems present an eigenvalue problem invol
a matrix with entries of absolute value less than or equal to 1, with none of the diagc
entries of absolute value 1. In many cases, only the first few eigenvectors are neede
only low precision of eigenvalues is required. There exist general exact algorithms, suc
Jordan or Gaussian elimination and backsubstitution, or the L-U decomposition, which
always provide a solution to the problem if it exists. However, the subtractions and divisi
of the small entries occurring in the matrix, necessary in these methods, may require dc
or higher precision to obtain an accurate result.

In many of these cases, one can benefit by using iterative methods. First, iterative met
can provide meaningful results while using a lower calculation precision. Secomdxfor
matrices meeting certain qualifications, we shall show computation time godsrasti-
plied by a factor dependent on the precision chosen, rather tharf fheexact methods.
However, the applicability of iterative methods is not as general or as straightforwarc
Gaussian elimination methods. In this paper, we look at a specific variation on the Ja
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iterative scheme; an explanation of the mathematics behind this scheme can be foul
Kreyszig [1]. This method seems well suited for solving matrix equations to provide a sin
fixed-point solution for the vector of expansion coefficients of periodic spheroidal functic
in associated Legendre functions.

There are several analyses of the Jacobi and the similar Jacobi overrelaxation mett
the stability of these methods was investigated by Rosanoff and Webel [2], and Udwadia
respectively. Manoranjan and Olmos Gomez have looked at a two-step Jacobi methoc
Several authors have looked at preconditioning the iteration matrix, often by approxima
inverse matrices [5—7]; in the last of these, Evans and Okeke categorize various conditio
schemes by the premultiplying conditioning matrix in their Fig. 1.1 and give a thorou
stability analysis of the modified preconditioned Jacobi method. Codenotti and Favati
have looked at a preconditioning method for a tri-diagonal matrix, which appears in
solution to our problem. However, their method is applied to symmetric matrices. In addit
tothe Jacobiiteration schemes, there is also significant literature on Gauss—Seidel and re
schemes; these algorithms differ from ours. It should be mentioned that we only cons
iteration schemes with a single preconditioning of the matrix; iteration schemes such as
or LR, which produce a sequence of matrices, have not been considered. Our methoc
only change th@ components in the vector of expansion coefficients, and by defining
inner product in this vector space, our method can provide a simple measure of how c
a vector is to the desired answer after a number of iterations.

Periodic spheroidal functions are one example of a solution to the Helmholtz equa
in a separable coordinate system. Oblate and prolate spheroidal and elliptical cylind
coordinates allow the Helmholtz equation to be solved by using separation of variab
creating an ordinary differential equation for each coordinate; yet in these cases, at |
one of the ordinary differential equations cannot easily be cast as that of a general
hypergeometric function. A common method of solving these differential equations is
noting the similarities between these coordinate systems and a limiting case, norn
spherical coordinates for oblate and prolate spheroidal coordinates, and circular cylind
for elliptical cylindrical coordinates. The solution to the differential equations found in tt
more complicated geometries are then expressed as a series expansion of functions
are solutions to the Helmholtz equation in the simpler geometry.

We take a specific example in this paper, the spheroidal functions, solutions to the
Helmholtz equation solved in oblate or prolate spheroidal coordinateslyiEf@] gives the
following coordinate transformation for prolate spheroidal coordinates:

X = csinhusinv cos¢
y = csinhusinv sing Q)
z = ccoshu cosv.

Exchange sinh and cosh in (1) to generate the oblate spheroidal transformation. As
descriptive names for the coordinate systems suggest, surfaces of comasésgither prolate
or oblate spheroids, and surfaces of constaate two-sheeted hyperboloids in prolate
spheroidal coordinates and one-sheeted hyperboloids in oblate spheroidal coordina
is an arbitrary constant representing the separation distance between the two foci o
ellipses in the coordinate system.

In either of these two coordinate systems, the Helmholtz equation separates. In |
of these systems, one of the decoupled ordinary differential equations correspondir



ITERATIVE METHODS FOR SOLVING MATRIX EQUATIONS 331

the longitudinal angle coordinate gives ordinary trigonometric functions. All the other
differential equations can be shown to be of the form

d2v dv :

—— + cotv— + [A + (kesinv)? — (mescv)?]V =0 2)

dv? dv
by an imaginary change of variable, an imaginary change of variable and translation, c
imaginaryk. In (2), A andm are constants of separatidt;is the constant appearing in the
3-D Helmholtz equation in Laplacian form. With a change of variable2 tarr' e, (2)
becomes

2
ccjj_y\zl + [1 secRy + (ko)?secty — m?]V = 0. )
We can recognize this as a 1-D Setiriger equation.

Itis useful to make the transformatiar= cosv. Inthe limitc = 0, spheroidal coordinates
are spherical polar coordinates. In spherical coordinates, the solutions for the latituc
angle coordinate go as associated Legendre polynomials th &sce these polynomials
make up an orthogonal expansion set, it may be helpful to formulate the problem to a
a sinusoidal dependence as an argument of spheroidal functions. This will also help 1
see the analogy betweerandé. In this case, the differential equation becomes

dzv dv
1- x2)W — 2X& + A+ 721 —-x) —mPA—x®>"Yv =0 (4)

We have made the substitutigr = k?c2.

Many authors have examined the problem of calculating spheroidal functions. Mos
the original tables were tabulated by Meixner anda8k&]10], Corbat’and Little [11], and
Flammer [12]. They expand the angular spheroidal functions in terms of associated Le
dre polynomals, and solve the recursion relation for the expansion coefficients via trunce
a continued fraction and obtaining numerical values using an overall normalization col
tion on the spheroidal function. Gianfelie¢ al. [13] write the expansion coefficients and
eigenvalues as a power series/inNesterov and Skorodumov [14] truncate the recursio
relations and rewrite this as a ratio of polynomials, using a root solver to determine the ei
values. Liet al.[15] write the recursion relations in matrix form and treat it formally as a
eigenvalue problem, solving it using a Mathematica eigenvalue solver. They determine
expansion coefficients by substituting the eigenvalues in the continued fraction and usi
normalization condition on the spheroidal function. We shall use a combinatiorebélLs
idea to find eigenvalues of matrix and a root solver to calculate the zero of a determin
similar to Nesterov and Skorodumov. Our method has the advantage of formulating
eigenvalue problem without reference to variables with no set value assigned, as we
directly providing a matrix, which after some manipulations will be used in finding tt
expansion coefficients.

Il. THE ALGORITHMS

To demonstrate the use of iterative methods for solving eigenvalue problems, to solve
differential equation (4) we must reformulate it as a matrix problem. Since (4) is the diff
ential equation for the variable analogous to the latitudinal angle, we restrict our discus
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to periodic finite spheroidal functions, although this is not a restriction on the computatio
method. Inthe limit ot = 0, this differential equation goes to that of the associated Legenc
functions forA = v(v + 1). The general solution to this Legendre differential equation is

APP(0) + BQR(X). (5)

The only solutions without singularities are tResolutions withv an integer. Clearly, to
investigate solutions with certain instabilities-at or 1, other solutions can be considered
Thus, a solution to (4) can be formally written as an expansion in associated Leget
polynomials:

o]

P y) = Y AP, (0. 6)

I=m—n

Substituting this series into the differential equation for spheroidal functions gives
following recursion relations among the expansion coefficients using orthogonality of
expansion set:

2 ,M+hm+1+1) +m? — }Aq
Cm+2 —1D2m+2 +3) n
> @m+1+1@2m+1+2) -1
R (2m+2|+3)(2m+2|+5)A'+2“ (2m+2| 3@m+2 — 1)

A—(M+DHMm+1+1)+

Alnlzn =0
(7)

First, note that the even and odd coefficients are not coupled. It makes sense to brea
problem into two functions, one for the even coefficients and one for the odd. The funct
with even coefficients corresponds to an even function, and that with odd coefficie
corresponds to an odd function; for a concise exposition we now focus on the even spher
functions. The series of recursion relations (7) can be written using linear algebra in
form of a matrix premultiplying a vector, giving

[Foo Foo O 0 0 0 0 Ao
0 O Fes Fes Fos 0 0 As | =0, (8)
0 O O Fg Fss Fsuo 0 -] As
0 0 O O Fwos Fro10 Fro1z ---| | Awo

where

Fi2=—ya(0 -1@m+2 +3)2m+2 +5)

Flise=—y2@m+1+DEm+1+2)2m+2 —)@m+2 — 1)
9)
Fi=A—-mM+DH(mMm+I+D]2m+2 —3)(2m+2 —1)(2m+2 + 3)

x (2m+2 +5) 4+ 2y [(m+DH(m+1 4+ 1) + m?—1]2m+ 2l —3)(2m+ 2| +5).
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Either the vector of expansion coefficients is identically zero, giving the zero solution
(4), or the determinant of the matrix is zero. Since it is difficult to obtain information fro
the semi-infinite determinant, truncate it after a finite number of terms, creating la
determinant. For example,

Ty = EZZ Ezz = FooF22 — Foz2F20;
(10)
Foo Foz O
To = ||[Foo F22  Fo4l| = FooF22Fas — Fo2F20Fasa — FooFaaFae.
0 Fa Fas

Substituting values fok or y, or a relationship betweenandy, we will then be able to
solve for the dependent parameter after setting the determinant equal to zero. Note the
cannot set both andy; if mis fixed, this would be equivalent to completely specifyinc
both the exact potential and all the eigenvalues of a&tihger equation. The resulting
polynomial from setting the determinant equal to zero will have multiple roots.

While there are several ways to determine roots of polynomials, most of which have b
incorporated into standard library functions, we shall use possibly the simplest itera
algorithm, inverse linear interpolation or the secant method. Roughly, this entails keej
only the first term in the Taylor series and approximating the derivative by a secant runr
through the root:

A = Ai—) ()

ANl =Aj — ———————.
o Te(Ai) — Te(hi—1)

(11)

A good guess for thath root of the polynomial equation might logén + 1), especially for
smally, as this is the limit ag goes to zero. Multiplying (7) by the least common denomi
nator, as we did to obtain (9), will eliminate instabilities caused when the denominators
through zero, making the determinafitsnfinite. We should also note that by using trial
matrices, the final matrix obtained when the root converges also provides a matrix wi
can be modified to determine the eigenvalues, since this matrix has a non-zero eigenv
solution to (8).

With the eigenvalue part of this matrix problem solved, the eigenvectors must be de
mined to specify the spheroidal function completely; we use an iterative scheme rather
an exact direct method. Note a matrix equatioA = 0 with a non-zero eigenvector can be
rewritten ( — F)A= A. Using this as an iteration matrix is the Jacobi iteration metho
however, this matrix must be modified to ensure a stable iterative scheme with a fixed p
We change the iteration matrik « ﬁ) so no element in the iteration matrix has an absolut
value greater than 1.

To modify the iteration matrix, take the final matrix formed in (11) when the eigenval
converged and note the signs on the diagonal element and the largest element in eac
If the diagonal element has the largest absolute value, divide each term in the row by
negative of the diagonal element. If the diagonal element does not have the largest abs
value and the element with the largest absolute value is of the same sign as the diac
element, divide each term in the row by the negative of the largest element. If the diag
element and the element with the largest absolute value are of different sign, divide ¢
term in the row by the largest element. After these divisions, each term should now
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between—1 and 1, and all diagonal elements should lie betweé&rand 0. Next we add
a unit matrix to this modified matrix; we now call the resultant mafixNote that this
matrix was constructed such that= B A, all off-diagonal terms lie betweenl and 1,
and the diagonal terms lie between 0 and 1. Thus, this matrix fulfills the requirement of
iteration matrix.

Use the matrix generated in the previous paragraph as a recursion relation betv
vectors. As a last point to the algorithm, a flag to stop iteration is needed. Conditic
can be set on the expansion coefficients themselves, but it will prove more useful to
the condition that the norm of the vector does not change. The orthogonality conditiot
associated Legendre polynomials gives

1
(2m 4!

J1Psioc ) ax=3" [Am o) o (12)

. £ lHm+1+1/2)

There are many ways to normalize periodic spheroidal functions, and there seems t
no standardization in the literature. For our purpose, we use the normalizationelyiErd’
which appears to have been taken from Meixner andafkeh as it directly sets the value
of the sum in (12). Other normalizations, such as those in Strattah or in Flammer,
set the value of the spheroidal function at a given point. As the sum in (12) is similar t
dot inner product of a vector, only with a weight function, this will prove more useful t
our discussions, since defining a norm or inner product is necessary to analyzing itere
schemes. Finally, we want to emphasize that the normalization only sets the overall con:
undetermined in the iteration scheme; the ratios between expansion coefficients must k
same without regard to any normalization scheme. The normalization we shall use is

ad @m+h! (n 4+ m)!

g Aln(y ) Nm+14+1/2 (n—min+1/2)° (13)
To normalize the spheroidal functions, after every iteration calculate

=M +1/2) N2 @mEDE

B Z[A“ 2 Hm+1+1/2)° (14)

(n+m)! =
k is the dimension of the iteration matrix used. Whda constant to the precision of the
calculation, divide each expansion coefficienttby.

Since all the coefficients in (13) come in as the square, there is still a sign ambiguit
the normalization. Select

Aan(V) > 0. (15)

The expansion coefficients may fluctuate between two sets of values, one of which i
negative of the other. This is not prohibited, since the sign of the expansion coefficients
not yet been set, and the square root can be of either sign. Finally, use (15) to deter
completely the periodic spheroidal function; this can be done by inspection.
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IIl. MATHEMATICAL ANALYSIS

There are two parts to the algorithm described above; first find allowed valuegiven
y, then determine the values of the coefficients for the associated Legendre polynomial
one particular allowed value af In determining the eigenvalues, there are two questions
merit. First, under what conditions will approximating the infinite matrix by a finite matri
yield accurate solutions? Second, under what conditions will the root solver give cor
roots when setting the determinant equal to zero?

To determine how large a finite matrix will give accurate roots, note that fixing to ze
those expansion coefficients of order greater than the dimension of matrix when calcule
the norm in Eq. (14) effectively decouples the fkséxpansion coefficients from the rest.
Therefore, an infinite representation ok k partial determinant used to calculates
a block diagonal matrix with the firdt x k terms with the same entries as the partia
determinant, and the other terms given by a diagonal unit matrix. This infinite representa
of the finite determinants implies reasonable answers as long as

| Fr—1.k/ Fickls [Frrak/Fikl < e, (16)

wheree is the set precision of the calculation. This follows since the calculation will n
be able to distinguish these matrix elements from zero. Note also that in order to calct
PS"(x, y), the determinant of the truncated matfix, must have at leastroots. Preferably,
one will pick ak which gives considerably more thanroots, since the last roots of the
determinant change dramatically as we move to a gré&ater

The second part of the eigenvalue problem depends heavily on the root solver utili
We have chosen inverse linear interpolation because it is simple and familiar, and it all
determinants to be calculated with numbers, not functions, while not requiring storag
several previous iterations. It also provides the matrix useful in the next step of the ca
lation. One can choose quadratic inverse linear interpolation for greater accuracy, or ¢
methods as the problem may dictate. Error analyses of many standard root solvers c:
found in various calculus or numerical analysis texts or Abramowitz and Stegun [16].

One analysis of the calculation of eigenvectors relies on Banach’s contraction map
theorem. This analysis has the advantage of being a generalization for the case of a fur
of one variable. The iterated vectBix can be replaced blfx = Bx/||Bx||. This new op-
erator changes the algorithm in that normalization must be performed after every itera
not merely at the very end. The operafois always a non-linear, non-expansive operato
on a complete Hilbert space and maps the closed unit ball into the closed unit ball. T
a fixed point exists via Brouwer’s theorem. However, Brouwer’s theorem does not prov
unigueness information; this is found by determining both whether this fixed point is
tractive (unlikex =0 for x/3) and the radius of convergence if attractive. A stable fixe
point should have the property that a vector close to the solution will get closer still after
iteration. This can be linearized for &nclose to the solution by the &chet derivative to
obtain a simple equation for stability of a fixed point. Denbteas the Fechet derivative
linear operator of which acts orh. Then

IF (Xso1 + h) — Xsolll = IF (Xsol + N) — FXsolll < [[(Xsol + 1) = Xsalll = N[ (17)
or

ILehl < lihl, (18)
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which implies the norm of the Echet derivative o must be less than 1. The inequality
in (17) is the condition for a contraction mapping; in some sense this is a local contrac
mapping. If this condition is a strict inequality, the norm of the oper&tan the region
where the fixed point is attractive will be less than 1, and all results of the contract
mapping theorem apply locally in the region where the fixed point is attractive.

A more powerful analysis of the stability of the iteration method uses the power metf
on a Hilbert space; a summary ofdberg’s [17] exposition follows. An arbitrary vector can
be expanded in an eigenvector basis, where the eigenvalues and eigenvectors are th
the matrix operatoB:

y=> cé. (20)

We have ordered the eigenvectérsuch that
A1l > |A2] = 3| = ---. (21)

By the definition of eigenvalues and eigenvectors, repeated iteration gives, after divic
by the largest eigenvalue,

n

B"y N (M)n N
=C161 + — ] Gé. 22
= ol ; ) o8 (22)

If the absolute value of the first eigenvalue is strictly greater than the other eigenvalues
see

n
lim

n—o0

y A
- = C1€1. (23)
We know an eigenvalue is 1; this is the definition of a fixed point. If this eigenvalue is t
eigenvalue with the largest absolute value, we can simplify (23):
lim B"y = c,8;. (24)
n—oo
Repeated multiplication of an arbitrary vector with the iteration matrix will converge to tl
desired eigenvector multiplied by a constant. This constant can be eliminated by calcule
the norm of the final vector.

Note, however, that the eigenvalue with the largest absolute value must be 1. If the n
converges in this iteration scheme, and the new iterated vector need not be renorma
after each iteration, only at the end, this must be true. This is the case for all the spherc
functions we calculated. Showing our iteration matrix has no eigenvalue with absolute v
greater than 1 is somewhat difficult; we present an argument using Gershgorin’s theo
This theorem states ifis an eigenvalue of a squanex n matrix B, then for somg, where
1<j<n,

n

Bjj — Al <> Bjl. (25)
k=1
k]

For all the matrices we used to calculate the results listed below, there was only one non-
diagonal element. For the row with a non-zero diagonal element, one of the off-diagc
elements had absolute value 1. For all rows with a zero diagonal element the sum o
absolute value of the off-diagonal elements was less than 1. This last statement, comt
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with Gershgorin’s theorem, implies that all but one eigenvalue must be less than 1; for
row with a non-zero diagonal element, we have

|Bjj — A <2 |Bjj| < 1 (26)

This last equation certainly allows an eigenvalue of 1, which must exist to have a fi;
point. One may also use Gershgorin’s theorem and other theorems relating elements
matrix to eigenvalues as a guide in determining how to precondition a matrix beforeha

Next we examine some general cases, where the largest eigenvalue is not 1, or the
complex eigenvalues, as well as investigate the circumstances in which the method wil
to converge to a fixed point. First, we look at the case where the largest eigenvalue o
matrix B is not 1. The easiest solution is to find the value of the largest eigenvalue :
divide each matrix element by this eigenvalue. This follows from the statement that if
eigenvalues of a matrik areA;, then the eigenvalues oM areca;; by dividing by the
largest eigenvalue, we ensure that the largest eigenvalue is set to 1. This should not «
the solutions to (8); by multiplying every element by an overall facttine resulting vector
formed by premultiplying the matrix by an arbitrary vector is merely a multipte the
vector formed by a matrix which was not multiplied byWe eliminate all these overall
factors when we normalize the final vector. To find the largest eigenvalue for an arbitr
matrix, use the other part of the power method. Note from (21),

12/ \2n+1
By, B™y) _ Slalt 14 Silal ()
(Bny, BYY) 35 lG 2 14+ 30| 2% (&)™

(27)

In the limit n becomes infinite, (27) goes to the largest eigenvalue. One will also obtain t
by taking the ratio of norms from one iteration to the next.

Since we did not restrict this method to symmetric matrices, there is no guarantee
all the eigenvalues will be real. For most cases, complex eigenvalues will not pose
difficulty. For this discussion, we assume the absolute value of the largest eigenvalue
been set to 1. Rewriting the complex eigenvalue in polar form,

A =rlexping)); 0<r; <Ll (28)

Thus for large numbers of iterations, the real multiplier and thus the power of the eigenv:
goes to 0.

This does not address the possibility of several eigenvalues with absolute value 1.
general case for amx n matrix with m eigenvalues on the unit circle in the complex plan
does not necessarily give fixed points, or fixed cycles. A fixed cycle returns a vecto
itself after a finite number of iterations on the vector. For the case of a fixed cycle tak
k iterations to return to the initial vector, each of the vectors in the cycle must sati
x; = M¥x;, so the eigenvalues are th@oots of unity. In this case, the eigenvectors can b
constructed by linear combinations of threvectors in a cycle. For example, with a cycle
of four, we have

D1 = C161 +1Co& — C363 — iCs€y €1 = (V1 + Do + D3 + U4)/4C,

U2 = C1€; — o€y + C363 — C48y & = (04— U2+ 103 —101)/4C; (29)
U3 = C161 —iCo8y — Caé3 +iCals &3 = (D2 + 04 — D1 + 03)/4C3
Ug = €18 + C28 + C383 + C4éy 8y = (V4 — Do+ 101 — i03)/4Ca.

Clearly this will only be useful for small cycles.
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If the eigenvalues are not roots of unity, and if the difference of the arguments of t
eigenvalues with modulus 1 is not a rational number, the iteration scheme will never re
a fixed point or cycle; the method fails. One should try to manipulate the matrix to ave
this situation. It is often useful to manipulate the matrix to avoid fixed cycles as well, a
to attempt to work only with fixed points.

Also, numerical instabilities will exist ifA1] — [A2] < &, the precision of the calculation.
The computation scheme will not be able to resolve any difference between the first
second eigenvalue; this may artificially force the computation into a fixed cycle (if t
difference in the arguments afy and A, is rational), diverge (if the difference in the
arguments is irrational), or give an incorrect result (if the difference is zero).

In concluding the discussion of the validity of the iterative method, we note that it m
be possible to identify the eigenvectors with eigenvalues less than 1 with possible fai
modes when exact methods give incorrect results. This seems plausible if somehow the
eigenvector cannot be resolved; an eigenvector with lower eigenvalue may then resu
the answer.

Next we look at the running time of the iterative algorithm. For each iteration, multiplyir
ann-component vector by anx n matrix produces? multiplications followed byr(n — 1)
additions. The run time per iteration then@$n?). The contraction mapping theorem also
provides an estimate of convergence of solutions. One can show

m m m( )

+1
Iys = Yoll = 37— (Iyall + 1%l) = —— = lIyoll-  (30)

V — <
Iy — ymll = 1-b
Herey is the fixed pointy; is theith iteration of an arbitrary vector, arlis the bound
or norm of the Fechet derivative. The left-hand side of this equation can be set to be
precision of the calculatioa. This gives

e(1-h)

m>In———~—/ Inb. 31
“ yoll(+b) 1)

The number of iterations to reach convergence to within a precisgoes as Ir{) plus a
constant term. However, this does not depend on the size of the matrix, so the run tin
O?Ine).

Similarly, we can analyze the run time using the power method. The number of iterati
must be such that

[A2/Aa|™ = [A2]™ < e. (32)
Taking the logarithm of both sides gives, after notinghls} < 0,
m > Ing/In|Az|. (33)
Once again, the number of iterations goes as)lplus a constant term.
While not a general trait of matrix problems, the calculation of spheroidal functio
involves an infinite matrix. There are two additional issues encountered; first whether

solution generated by the expansion in associated Legendre functions converges, and s¢
whether the sequence of iterative solutions for finite dimensional matrices converg
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the limit of an infinite matrix. For our example, the first problem is usually proved
texts discussing spheroidal functions via continued fractions. Since the equivalenc
determinants of truncated matrices and terminated continued fractions is discussed in
on continued fractions such as Wall [18], and proofs of convergence for continued fracti
can be found in Stratton, we do not discuss it further here and instead turn our attentic
the convergence of the sequence of iterative solutions. Denote the iterative solution o
infinite matrix by Xso and that of then x n finite matrix byx,. Call the operator formed
by using am x n matrix B,. y is an arbitrary vector of norm one. ExteBg to an infinite
dimensional space by appending 0's for off-diagonal terms with one index greatar,tha
and appending 1's for on-diagonal terms with indices greater th&imilarly extendx,

to an infinite dimensional space by appending zeros for vector components with ind
greater tham:

lim lim ||B™y — BY||

m—o00 N—o00

[ Xsol = Xnll

m—-1
< Jm_im 3 8@ - By

. (34)
=

M—00 N—00 4

lim lim > " |B™)|||B — Byll[|Byy||
i=0

m—1

lim B o] Byy|| = o.
i=0

This follows from the triangle inequality and the boundednesB.ofhus, a unique fixed
point exists for operators produced by the finite matrices, and the sequence of these
points will converge to a solution of the infinite matrix.

One final comment is in order. Our example of spheroidal functions does not re:
take the best advantage of the calculation speed mentioned above; both exact and ite
methods should run in linear time on a tri-diagonal matrix. However, accuracy is ensure:
the topological properties of a Hilbert space, and this is independent of the accuracy o
mathematical processor. Thus, assuming the processor is capable of obtaining the pre
desired or better, the results of iterations will be forced to the fixed point, regardles:
cumulative computational errors. This feature of iterative methods is always present w
the iteration matrices satisfy the conditions discussed above.

IV. RESULTS

We now present results of our algorithm for the cas@®df'(x, y), and compare them
with Flammer’s and Little and Corbalt tables. All computations were done using Maple
V, Release V on a Windows NT machine with an Intel Pentium Il processor. In Table I,
list eigenvalues from Flammer and the same numbers calculated from the iteration sck
(11). Note that the differential equation for angular spheroidal functions in Flammel
slightly different from that in Meixner and Sefke; Flammer’s equation is

2
1- xz)z—x\g - 2x(;—\; +[r =X —m1l-x®»"V =0. (35)
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TABLE |

Eigenvalues: Flammer's and Ours

Y )\00, Flammer )\00 Y )\OLFIammer )\01 Y }\OZFIammer )\02

0 0 0 0 2 2 0 6 6

0.2 0.01331 0.01330965977 0.2 2.02399 2.023989025 0.2 6.02096 6.020968¢
0.4 0.05296 0.0529560091 0.4 2.09582 2.095824209 0.4 6.08407 6.084067/
0.6 0.11810 0.1181021565 0.6 2.21511 2.215108515 0.6 6.18986 6.189864/
0.8 0.20739 0.2073904977 0.8 2.38118 2.381175780 0.8 6.33927 6.339268¢
1.0 0.31900 0.3190000551 1.0 2.59308 2.593084580 1.0 6.53347 6.533471¢
1.2 0.45073 0.4507283534 1.2 2.84961 2.849610685 1.2 6.77387 6.773865-
14 0.60010 0.600096432 14 3.14924 3.149239296 1.4 7.06193 7.061932¢€
1.6 0.76447 0.764471910 1.6 3.49016 3.490158703 1.6 7.39913 7.399125¢2
1.8 0.94120 0.941200653 1.8 3.87026 3.870257570 1.8 7.78673 7.786724¢
2.0 1.12773 1.127734064 2.0 4.28713 4.287128543 2.0 8.22572 8.225713C
14 )\03. Flammer )\03 Y )\1]_ Flammer )\11 Y AlZ.FIammer )\12

0 12 12 0 2 2 0 6 6

0.2 12.02045 12.02044972 0.2 2.00799 2.007992694 0.2 6.01714 6.017136¢
0.4 12.08186 12.08186235 0.4 2.03188 2.031883469 0.4 6.06847 6.068471¢
0.6 12.18443 12.18442966 0.6 2.07141 2.071413195 0.6 6.15378 6.153782¢
0.8 12.32848 12.32847557 0.8 2.12616 2.126159145 0.8 6.27270 6.272697:
1.0 12.51446 12.51446215 1.0 2.19555 2.195548355 1.0 6.42470 6.4246991
12 12.74300 12.74299682 1.2 2.2788755 2.278875547 1.2 6.60913 6.609127¢
1.4 13.01484 13.01483980 1.4 2.37533 2.375324823 1.4 6.82518 6.825183¢
1.6 13.33091 13.33090985 1.6 2.48399 2.483994144 1.6 7.07193 7.0719327
18 13.69229 13.69228618 1.8 2.60392 2.603921437 1.8 7.34832 7.3483147
2.0 14.10020 14.10020388 2.0 2.7341110 2.734111025 2.0 7.65315 7.653149!
14 A13 Flammer A1z Y A22Fammer A2z Y A23Flammer A2s

0 12 12 0 6 6 0 12 12

0.2 12.01867 12.01866884 0.2 6.00571 6.005711178 0.2 12.012333 12.01332
0.4 12.07470 12.07470112 0.4 6.02281 6.022807533 0.4 12.05328 12.05327¢
0.6 12.16817 12.16817139 0.6 6.05118 6.051178349 0.6 12.11971 12.11970¢
0.8 12.29920 12.29919503 0.8 6.09064 6.090641815 0.8 12.21242 12.21241]7
1.0 12.46792 12.46791533 1.0 6.14095 6.140948992 1.0 12.33110 12.331101
1.2 12.6744862 12.67448617 1.2 6.20179 6.201789172 1.2 12.47538 12.47538:
1.4 12.91905 12.91905116 1.4 6.27280 6.272796426 1.4 12.64481 12.64480]
1.6 13.20172 13.20172024 1.6 6.35356 6.353557109 1.6 12.83884 12.83883¢
1.8 13.52255 13.52254490 1.8 6.44362 6.443618072 1.8 13.05688 13.05687
2.0 13.8814934 13.88149342 2.0 6.54250 6.542495274 2.0 13.29825 13.29825(

Thus, Flammer' is oury, but Flammer's. is our + y2. We have already accounted for
this difference in our tables. The average number of iterations to 10-digit convergenc
seven.
In Table Il we compare the ratios of expansion coefficients for seléRg8Hx, y) with
y =1 and 2 using the eigenvalues determined above with ratios computed from Little |
Corbat’s tables. We use Flammer's tables for those cases where he gives greater
the seven places in Little and CorbaiVe look at the ratios because these quantities a
independent of any normalization selected. Our expansion coefficients are calculate
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iterating until the value of the norm is constant to at least nine places. This takes less
30 iterations.

Given that both Little and Corbatind Flammer state their results may be off by one ¢
more in the last place, and that these errors propagate through the division, our result
not inconsistent.

TABLE Il
Ratios of Expansion Coefficients: Flammer's, Little and Corbat’s, and Ours

PS (X, Dic Ps(x, 1) PS(X, 2)c Ps(x,2)
A/ Az —81.98272 —81.9826884 A/ Az —20.77072 —20.7707097
As/As —178.5232 —178.523183 Az/As —44.91608 —44.9160701
As/ A; —306.7511 —306.751005 As/A; —76.97433 —76.9743615
Ar/ Ay —466.8760 —466.876119 A/ Ay —117.0052 —117.005117
Ag/Anx —165.0239 —165.023904
A1/ Az —221.0365 —221.036485
Psh(x, Dic Psi(x, 1) PsH(x, 2)r Psi(x,2)
Ao/ A, +3.339112e-2 +3.33911151e-2 Ay/ A, +0.12375847 +0.123758461
A/ Ay —94.59394 —94.5939523 A/ Ay —23.684528 —23.6845291
As/As —209.8502 —209.850179 As/As —52.527261 —52.5272607
As/ Ag —355.3031 —355.303200 As/ Ag —88.901066 —88.9010681
Ag/ Ao —532.1282 —532.127963 Ag/ Ao —133.11223 —133.112225
Ago/ Agz —185.24788 —185.247878
Asz/ Ara —245.34235 —245.342354
Aga/ Ass —313.41190 —313.411914
Age/ Aag —389.46523 —389.465258
Asg/ Az —473.50745 —473.507459
Pﬁ(x, 1)|_c P§(X, l) Pg(X,Z)LC Pﬁ(X,Z)
Ao/ Az —249.5560 —249.555972 Ao/ Az —65.83287 —65.8328673
A/ A, —299.5804 —299.580418 A/ A, —76.85448 —76.8544958
Ay As —431.1593 —431.159206 Ay As —109.4333 —109.433241
As/As —601.8268 —601.826844 As/As —151.9579 —151.957977
As/ Ao —203.1344 —203.134407
Ago/ Agp —262.6083 —262.608289
P%(Xa Dic P%(le) PS§(X,2)Lc P§(x,2)
A/ As —190.0881 —190.088070 A/ As —48.37032 —48.3703357
Az/As —315.5598 —315.559843 Az/As —79.64133 —79.6413227
As/ A —474.4665 —474.466384 As/A; —119.3187 —119.318729
A7/ Ag —665.8549 —665.854870 A7/ Ay —167.1353 —167.135318
Ag/Asx —223.0166 —223.016562
P, Dic P(x, 1) PS(X, 2)c PS(x,2)
Ao/ Az —9.302358 —9.30236137 Ao/ Az —2.594044 —2.59404295
A/ Ay —58.87578 —58.8757937 A/ Ay —15.22100 —15.2209994
As/ As —139.2044 —139.204417 As/As —35.36820 —35.3681952
As/Ag —251.3487 —251.348675 As/As —63.43610 —63.4361232
As/ Ao —395.4301 —395.430041 As/ Ao —99.47543 —99.4754256

Ao/ Az —143.5010 —143.501067
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Table Il— Contiuned

P (X, D)ic Ps)(x, 1) P (X, 2)ic P (x, 2)
A/ As —24.78931 —24.7893217  A/As —6.075177 —6.07517888
Az/As —87.91655 —87.9165486 A3/ As —21.82251 —21.8225076
As/A; —183.5455 —183.545478 As/ A, —45.71781 —45.7178151
Ar/Ag —311.3402 —311.340241 A/ A —77.66054 —77.6605406
Ao/ A1z —177.6244 —117.624388
A/ Az —165.5995 —165.599419
P(x, Dic PS(x, 1) PS(x, 2)c PS(x,2)
Ao/ Az +2.150491e-2 +2.15048961e-2A,/ A, +7.738010e-2 +7.73801443e-2
As/ A, —40.74947 —40.7494916 A/ A, —10.04196 —10.0419562
Ay/As —118.6964 —118.696388 Ay/As —29.51113 —29.5111296
As/ As —229.7089 —229.708879 As/ As —57.25654 —57.2565390
Ag/ Ao —373.1270 —373.126923 Ag/ Ao —93.10669 —93.1066893
Ago/ Ago —137.0079 —137.007878
P§(X, D¢ P%’(x, 1) Pﬁ(X, 2)ic P@(X, 2)
A/ As +1.729076e-2 +1.72907588e-2A; / Az +7.069070e-2 +7.06907088e-2
Az/As —56.66337 —56.6633750  Az/As —14.09139 —14.0913927
As/A; —149.7652 —149.765237 As/ A, —37.36378 —37.3637874
Az/Ag —276.2019 —276.201884 A/ A —68.97131 —68.9713194
As/Asy —435.2224 —435.222381 Ao/ A1z —108.7254 —108.725415
A1/ Az —156.5569 —156.556794
Pst(x, ic Psl(x, 1) Pst(x, 2)r Pst(x, 2)
Ao/ Az —77.01811 —77.0180852  Ay/A: —20.814235 —20.8142346
As/ Ay —148.5253 —148.525238 Ax/ A, —38.321262 —38.3212629
Ay/As —258.8156 —258.815563 Ay/As —65.813092 —65.8130912
As/ As —402.0793 —402.079341 As/ As —101.59196 —101.591963
Ag/ Ao —145.46764 —145.467638
Ago/ Ago —197.38776 —197.387768
A1/ Ass —257.33203 —257.332048
Asa/Ass —325.29091 —325.290929
Age/ Aag —401.25934 —401.259320

V. CONCLUSION

We have found that we can use iterative methods to calculate quickly and accurately
eigenvalues and eigenvectors necessary to solve for the periodic spheroidal functions, |
reverse linear interpolation and a variant of Jacobi’s method. Our results are in agreer
with the tables of Flammer and Stratton. We have investigated the circumstances in w
the modified Jacobi’s method can be applied to general matrices. The run time of this me
goes afd(n?), with an additional factor of order the logarithm of the calculation precisiot
We have determined various conditions on the eigenvalues of the matrix in Jacobi’'s me
where the iteration scheme will fail, and we have discussed possible ways to resolve s
failure modes. We conclude that using iterative methods to solve eigenvalue and eigenv
problems is an excellent way to avoid inaccuracies due to propagated errors from fi
precision by relying on the topology of Hilbert spaces, as well as accelerating computa
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time, for those iteration matrices where the absolute value of the largest eigenvalt
significantly greater than other eigenvalues.
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